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LETTER TO THE EDITOR 

Low excitations of the anyon gas 

Nikitas I Gidopoulos 
Institute of Materials Science, National Centre for Scientific Research 'Demoktitos', 153 10 
Aghia Panskevi Attikis, Athens. Greece 

Received 7 March 1995 

Abstract. A self-consistent approach to approximate the ground State as well as the lowest 
excited states of an interacting fermion system is described briefly. The approach is used to 
study low particle-hole excimions of the many-anyon gas. The exetations found x e  different 
and lower than those studied previously (Laughlin R B 1988 Pkys. Rev. Len 60 2677: Hanna C 
B. Laughlin R B and Fetter A L 1989 Pkys. Rev. B 49 8745) but the energy gap which appears 
it still logarithmically divergent. 

Although the problem of a few anyons is tractable [3-71 and its solution has shed some light 
on the thermodynamic properties of the dilute anyon gas [8-10], an exact treatment of the 
many-anyon problem, even in the ideal case of a non-interacting system, is still forbidding 
and one has to resort to approximation techniques. 

In the pioneering work of Laughlin [ l ]  and of Hanna et a1 [Z], the HartreFock (HF) 
approximation was used to study the anyon gas in the Fermi representation. It was shown 
that in the limit of a large number N of particles and for certain values of the statistical 
parameter, 01 = l/n, where n is a non-zero integer, the ground state is composed of Landau 
orbitals and the n lowest Landau levels are exactly filled. Further, by subtracting the 
highest occupied energy eigenvalue E. of an orbital in the nth Landau level from the energy 
eigenvalue <"+I of an orbital in the next unoccupied level, it was possible to approximate 
the energy gap which separates the ground state from an excited state corresponding to a 
single-particle excitation to the n + 1 level. The result is a logarithmically divergent energy 
gap. It is then argued [Z] that the magnitude of the gap is unphysically large to correspond 
to a low excitation and the particle and hole states should rather be considered as a natural 
basis for a higher-order perturbation expansion. They concluded that the low excitations 
must be soft compressional sound waves. 

Logarithmic divergences are not unusual in two-dimensional systems and for a system 
with a finite number of particles the energy gap would also be finite. However the use of E , + ~  
raises the question of self-consistency of the result. Koopmans' theorem justifies the use of 
the energy eigenvalue of an orbital, occupied in the ground state for the approximation of 
the ionization energy. It is ambiguous, however, to use the energy eigenvalue of an orbital 
which is not occupied in the ground state and deduce results about the excitation energy, 
especially when the energy gap is so large. 

In this work, I describe briefly a self-consistent approach 11 1,121, which can be regarded 
as a generalization of the HF approximation, as it approximates self-consistently the ground 
state as well as the low excited states of an interacting system of fermions. Using this 
approach, I investigate the possibility of lower excitations than those found in [l,  21. In the 
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limit of an infinite number of particles, the excitations found can be interpreted as single- 
particle excitations from occupied orbitals of the nth Landau level to unoccupied orbitals 
of the same level. However, the energy gap for these excitations is again logarithmically 
divergent, verifying indirectly the validity of the result in [1,2]. 

Minimum principles provide us with a powerful tool when an approximate treatment 
of a physical problem is necessary, in contrast to variational principles in  general, which 
give us information only about the exact solution of the problem. The self-consistent 
approximation [11,12], is based on a minimum principle 1131 referring indirectly to the 
ground state and the lower excited states of the Hamiltonian fi, which describes a system 
of N interacting fermions. Thus if Vd is a d-dimensional subspace of the N-particle 
Hilbert space 7-1 and if V r '  is the subspace of 7-1, which is spanned by the d lowest 
eigenstates of fi, then Trv,[fi] > TrVp,[fi], where Trv,[fi] is the trace of fi restricted 
in Vd. The minimum principle guides us to use an appropriate simplified subspace W, 
of 'F1 and approximate the whole linear space V,') directly. The subspace Wd of 7-1 
should minimize the functional Trw;[fi] over all trial subspaces Wi of H. Let us take 
for simplicity d = 2. In an approximation analogous to the HF, the simplified space W2 
is produced by linear combinations of the N-particle Slater determinant Qo corresponding 
to the ground state of the interachg fermion system and its lowest excitation. If QO 
has the form 00 = del[+], $ 2 ,  . . . ,  +"I, with $1, $2, . . ., $" the orbitals occupied in the 
ground state, the lowest excitation will normally have the form of a single-particle excitation 
@I = det[$l, $2, . . . , +"-I, +,~+1], where the orbital $"+I corresponds to the excitation. 
The orbital space ($1,  $2, . . . , $"I, together with +"+I define the space WZ. In order 
to minimize the trace Trw;[fi] we must vary the orbitals. A system of N + 1 coupled 
single-particle equations results. These generalized HF equations describe the ground state 
and the first excited state of an N-particle system, and they resemble formally, the usual HF 
equations of some hypothetical (N + I)-particle system. The difference is that the various 
exchange terms are, in this case, multiplied by weights which are different from unity. The 
form of the generalized HF equations for a Coulomb system can be found in 1121, where 
the method has been applied and tested successfully in the case of simple atoms. 

In order to simplify the presentation, the ground and the lower excited states of the 
anyon gas will be calculated in the Bose limit, i.e., when the statistical parameter is equal 
to CY = 1. Similar results are obtained for any value of a = I/n, provided n << N .  The 
Hamiltonian fi which describes the system of anyons, at the Bose point is 

H = - 
2M 

d2r'l"(r)[-VZ - 2iA(r ) .  V +  i*(r)]rlr(r) 

where rlrt(r) and q(r)  are second-quantized creation and annihilation field operators, 
A(r1) = Sd2rz\V+(r2)A12Q(r1),  TI^ = T I  - r2, A12 = for lrl~l > h and A12 = 0 
for 1 ~ 1 2 1  c A. In the end of the calculation. the limit h + 0 must be taken. 

We consider a large number of N anyons, enclosed in a large circular area of radius 
L and surface S = nLZ, Let the ground state have the form 00 = det[$i, +I, . . . , $NI. 
The degeneracy of each level is N ,  equal to the number of particles and the orbitals +I, 
i = 1,. .., N ,  exactly fill the first Landau level [1.2]. Since we want to study single- 
particle excitations of the system, we introduce an extra orbital +"+,. As the orbitals 
of the ground state are degenerate, an excited state corresponds to an excitation of a 
particle from an orbital +I, i = 1, . . . , N ,  to the orbital WN+I and will have the form 
Qn = det[+,, ..., +.-I, $"+I, +"+I, ..., $NI. There are N such Slater determinants 
an, n = 1. . . . , N, which, combined with 00, produce the linear space W N + ~ .  

II? 
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We next mansform to dimensionless coordinates: 

X = T / a  ( l a )  

where a is the radius: 

c l  = (2Hp)-”’ (lb) 

and p is the density: 

p = (N + l)/nL2. ( I d  

The orbitals $j(r) are transformed to: 

@i@) = a$;(az). (14 

Note that p is not the uniform ground state density of the N-anyon system. The density 
p corresponds to the whole space WN+I and its meaning will be apparent shortly. In the 
same say, a is not the cyclotron radius of the average magnetic field which appears in the 
ground state of the N-anyon system. 

The trace of the Hamiltonian fi in the linear space WNfl spanned by the determinants 
an, (n = 0, . , . , N ) ,  is: 

Trw,,,, [A] = GI + Gz + G3 + Ga ( 2 )  

where 

I [ @&I) @.k(z2)  @&3) 

@i(Zi) @i(zd @i(~3) 
x det @ j ( z l )  @ j ( d  @ j ( ~ d  

and a12 = for 1x121 z A while it vanishes for [zi21 c A. The coefficient N in GI  
is the number of Slater determinants an in which a given orbital @i is occupied. Similarly 
the coefficients N - 1 and N - 2 which appear in Gz. G3 and G4 denote the number of 
determinants which occupy a given pair of orbitals I&, 4) or a triplet {&. @j,  @k). We 
observe that the orbitals @j, i = I, . . . , N + 1, are equivalent in the functional form of the 
trace, in the sense that an interchange of any two orbitals leaves the trace unchanged. This 

x12 
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is due to the fact that wN+] is produced by all the N-particle Slater determinants which 
can be constructed out of the N + 1 orbitals. 

Assuming that the particular set of orbitals minimizes the trace TrW,,+, [ e ] ,  we vary 
an orbital in order to derive the generalized HF equations. Dividing by 2irph2N/M, the 
equations which result from the variation are: 

@,J(~I) @,(Ez) @ j ( z 3 )  =6i@i(s1), 

@i(zl) h ( z 2 )  @i(s3) 

@k(Z l )  @&z) h(z3) I xdet  [ 
The resulting equations have a similar form as the usual HF equations for the ground state 

of a hypothetical ( N  + I)-particle system. The only difference are the coefficients (1 - i )  
and (1 - $) which multiply the exchange terms of the HF Hamiltonian but do not affect 
the direct Hartree term. We know from [1,2] that the Hartree term gives the qualitative 
description of the system and in the limit of a large number of particles, the exchange terms 
do not alter this pictm but only correct the energy eigenvalues of the orbitals and the total 
energy of the system. Therefore, the idea of the hypothetical (N + I)-particle system can 
be useful for the solution of the generalized HF equations. Suppose that 91, . . . , +N+1 are 
the orbitals which constitute the self-consistent soIution of the generalized HF equations. 
Then 5 = del[&, . . . , $ N + [ ]  will be the (N t I)-particle Slater determinant describing 
the ground state of the hypothetical system. The density E;=:' I@j(z)lz of 5 will be 
uniform since the generalized KF Hamiltonian is translationally invariant. The interpretation 
of the density p .  equation (IC), is apparent, it is the ground state density of the hypothetical 
system, in terms of the unscaled orbitals p = cz' I@j(r)lz. From the scale transformation 

The Hartree approximation to the problem, apart from a constant term, is given by 
Hl(z)@,(z) = pi+i(z),  Hl(z) = i [ - iV + a ( x ) ] *  and a(z) = 1/22 x z. Each charged 
particle of the hypothetical system interacts with the uniform magnetic field produced by 
the particles. The radius a,  which was defined in the scale transformation, is the cyclotron 
radius of this average magnetic field. The eigenstates of HI are orbitals which fill the 
Landau levels. The degeneracy of each Landau level, using equation (la-c) is easily found 
to be equal to the total number of orbitals. The N + 1 orbitals therefore exactly fill the first 
Landau level. Hence the orbital @N+,,  which we introduced to study the excitations from 
the ground state, belongs to the first Landau level. In the limit N + 00, we may substitute 
the density matrix p ( z l f  02)  = cy<' @,(zl)@;(zz), with the projection operator ll, (1,2) 
for the first Landau level [2]. One can then show, following Hanna etal [Z] that each term 
of the generalized HF Hamiltonian is either equal to a constant or can be written as a linear 
combination of projection operators n. for the nth Landau level. 

We conclude that the self-consistent eigenstates of the generalized HF Hamiltonian are 
the orbitals which fill the first Landau level. 

cfi:' 1@,(")12 = &. 
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Let us suppose that the number of particles is large but finite. As the orbitals are known, 
we can construct the Slater determinants @", n = 0, . . . , N. We must remember that the 
orbitals which build @o are not identical to the orbitals which are self-consistent solutions of 
the liF equations for the ground state of the N-particle problem. They are scaled differently 
and they are also changed slightly by the variation. In the limit of an infinite number of 
particles the two orbital sets coincide. 

The approximate ground state Q(') will be given by a linear combination of all the 
Slater determinants W(') = E,"': c$)am, and not by @O along. Similarly, the approximate 
excited states will be given by Q(") = E,":; c:)am. The coefficients c:), n = 0. , , . , N 
are the eigenstates of the matrix (@n[kl@m). Its eigenvalues give the approximate ground 
and excited state energies. 

If we assume that in the limit N + CO the weight c t '  of 00 in the linear combination for 
the ground state approaches unity, while the weights ct' of @O in the linear combinations 
for the excited states vanish, then the excitations we have found may be interpreted as 
excitations from an unoccupied orbital of the first Landau level to an unoccupied orbital of 
the same level. 

The proper way to find the ground and the excited state energies is by diagonalizing 
the matrix (OnIklQm).  However we shall take a shortcut. Since we know the orbitals we 
can calculate explicitly the terms G I ,  . . . , Gd, equation (Z), and find the trace Trw,+,[k]. 
Assuming the excited states we study are degenerate with energy E l ,  the trace Trw,+,[H], 
gives us the sum of the ground state energy EO and El, with weight N. The result in units 
2h2N/(MLZ) isequal to Eo+NEI = $(N+1)2+~(N+1)Z[ln(N+1)+y]/(N+2), where 
y = 0.57721566 ... is Euler's constant. The accuracy of the results is of the order of unity 
which is satisfactory compared with the large values of N and In N. In the calculation the 
different coefficients N, (N - 1) and (N - 2) in front of G I ,  Gz - Gs and Gq distinguish 
our case from the ground state of some real (N + 1)-anyon system. If the above coefficients 
were equal, the logarithm in the result would not appear. Using the result for the ground 
stateenergyfrom[l,Z], EO = i N ,  weeasilyfindthat E ,  = $N+iEN,  where EN coincides 
with the corresponding quantity defined in [2], EN ;(In Nfy ) .  The energy gap therefore 
is equal to AE = + E N .  

It is somewhat surprising to see that the energy gap for a singleparticle excitation from 
an occupied orbital of the first Landau level, to an unoccupied orbital of the same level, 
diverges logarithmically, in a similar way as with the excitation of a particle to the next 
unoccupied level, although the value of the gap is smaller, by exactly half. The logarithmic 
nature of the gap suggests that the particle and hole excitations are charged vortices [I, 2,141. 
The magnitude of the gap, however, is still very large and the excited states we have found 
should be considered as a basis for a perturbation expansion [Z]. 

Finally let me note that the present excitations appear only when we start with a finite 
number of particles and a finite area of the system, then derive the equations to study 
the excitations and only in the end let N, L + CO. This leads me to believe that these 
excitations are connected with the boundary of the system. 

I would like to thank Dr A K Theophilou for useful discussions 
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